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The elastic moduli of single..:rystal MgF2 (rutile structure) have been measured ultrasonically to 7 kbars. Zero
pressure moduli are in good agreement with the results of others. The pressure derivative of the shear modulus Cs 
= (c 11 - c 12)/2 is -0.7 ± 0.1 which is consistent with the negative values also found in rutile-structure oxides. Estimates 
of the isotropic aggregate modulus derivatives are in good agreement with derivatives measured on poly crystalline 
aggregates by Rai and Manghnani. The calculated isotropic aggregate bulk modulus derivative is K ' = 5.1 ± 0.2, which 
is lower than for the rutile-structure oxides, and comparable to that for other fluorides. More covalent bonding may 
increase the value of K', and hence the value for stishovite (Si02, rutile) may be quite high. 

1. Introduction 

The elastic properties of materials with the rutile 
crystal structure are of particular interest in geophys
ics because of the existence of stishovite, the high
pressure rutile-structure phase of Si02 [I]. Stishovite 
may exist as a stable phase in all or part of the lower 
mantle [2,3]. In any case, its density and elastic proper
ties are important reference data for estimating the 
properties of possible mantle mineral assemblages and 
for interpreting the density and elastic velocity profiles 
of the mantle [4,5]. Because of the difficulty of 
making or collecting sufficient quantities of stishovite, 
even its zero-pressure eleastic properties are still quite 
uncertain [6- 9], and shock wave data for silica do 
not provide very strong constraints [10 ,11 ] . 

To date, the single-crystal elastic properties of 
three other rutile-structure oxides have been measured 
under pressure (Table 1); rutile itself (Ti02), Ge02, 
and cassiterite (Sn02)' Two notable features of the 
results are the unusually large-pressure derivatives of 
the bulk modulus, K' (compared with "usual" values 

1 Present address: Department of Geological Sciences, The 
University of Rochester, Rochester, N.Y. 14627, U.S.A. 

of 4- 5), and the negative pressure derivatives of one 
shear mode, c~. In trying to infer from these results 
the likely properties of stishovite, it would be useful 
to know to what extent the properties are intrinsic 
characteristics of the crystal structure, and to what 
extent they depend on the character of the ii1teratomic 
bonding (ionic vs. covalent) or the character of the 
metals (transition vs. group IV) . The pattern of 
relative magnitudes of the elastic moduli of rutile is 
in fact slightly different than that of the other two, 
indicating that the transition character of Ti has some 
influence. Transition metals are also associated with 
anomalous elastic properties in other compounds [5]. 

An indication of the influence of bond character 
on the elastic properties can be obtained from a com
parison of the oxides with fluorides which crystallize 
in the rutile structure, since the latter should be more 
ionic. Zero-pressure single-crystal elastic moduli have 
been measured for MgF2' MnF2 and CoF2 (see Table 
1), but no measurements of single-crystal properties 
under pressure have been reported to date. Recently 
the pressure dependence of the elastic moduli of poly
crystalline MgF2 have been reported by Rai and 
Manghnani [12]. Measurements of the single-crystal 
moduli under pressure are still desirable because they 
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TABLE 1 

Single-crystal elast ic moduli, Cij (Mbars), and their pressure derivatives Clj' of rutile-structure compounds, (bu lk moduli, K , and 
shear moduli, /1, of isotropic aggregates are estimated from the Hashin-Shtrikman bounds [26 ,27]) 

ell c33 cl2 c!3 c44 c66 C * s K J1 Reference 

Ge02 3.372 5.994 1.882 1.874 1.615 2.584 0.745 2.58 1.51 [33] 
Ti02 2.714 4.840 1.780 1.496 1.244 1.948 0.467 2.15 1.14 [34] 

2.701 4 .819 1.766 1.480 1.239 1.930 0.468 2.13 1.13 [30] 
Sn02 2.617 4.496 1.772 1.555 1.0 31 2.074 0.423 2.12 1.02 [35] 
Mnf2 1.030 1.628 0.816 0 .709 0.300 0.677 0.107 0.893 0.30 [22] 
Cof2 1.023 1.704 0.730 0 .610 0.373 0.952 0.147 0.836 0.39 [36] 
MgF2 1.237 1.770 0.732 0 .536 0.552 0.978 0.253 0.868 0.52 [25] 

1.395 2.041 0.897 0 .625 0.564 0 .951 0.250 1.010 0.54 [23] 
1.399 2.042 0.893 0.637 0.570 0.954 0.253 1.014 0.55 [22] 
1.408 2.053 0.900 0.635 0.567 0 .957 0.254 1.019 0 .55 [24] 
1.427 2.040 0.922 0.641 0.567 0.935 0.253 1.028 0.55 this paper .** 

±0.003 ±0.005 ±0.005 ±0.010 ±0.002 ±0.015 ±O.OO 1 ±0.010 ±0.01 
---- - - ._----

c' II c:n e '12 C'l3 C44 C66 Cs K' /1 Reference 

Ge02 6.65 6.63 8.05 4 .10 1.78 4.10 - 0.70 6.1 1.13 - 1.59 [33] 
Ti02 6.47 8.34 9.1 0 5.02 1.10 6.43 - 1.32 6.8 0.50 - 1.34 [34] 

6.29 8.13 9.02 5.57 1.08 5.91 - 1.37 6.9 0 .35-1.16 [30] 
Sn02 5.25 6.10 6.73 4.65 0.89 3.18 - 0.74 5.5 0.28-0.76 [35] 
Mgf2 5.0 5.7 6.4 4.2 0 .8 2.9 -0 .7 5.1 0.38 - 0.72 this paper *** 

±0.1 ±0.1 ±0.2 ±0 .3 ±0.1 ±0.2 ±0.1 ±0.2 
5.1 '* 0.7 '* [12] 

(3.31 ) (3 .96) (5.21) (3.31 ) (-0.31) (2.94) (-0.95) (3.84) (- 0.25 - 0.11) [31] ,*, 

* Cs = 1 12(c 11 - cl2) ' 
** Uncertainties derived from deviations from internal consistency (Table 3) . 

** * Uncertainties derived from sca tter in data. 
* Measurements on polycrystalline aggregates. 

t'* Values in parentheses are theoretical. 

provide more information on the nature of the inter
atomic forces , and because the reliability of measure
ments on polycrystals has been questioned (e.g. [13]). 
This paper reports the results of ultrasonic measure
ments of the elastic moduli of single-crystal MgF2 
under pressures up to 7 kbars. These results are less 
accurate than is commonly achieved (or claimed) in 
ultrasonic measurements, but they are nevertheless 
accurate enough to be useful. 

2. Specimens 

Five crystals of MgF2' with the orientations listed 
in Table 2, were purchased from Optovac Inc., North 
Brookfield, Mass., each being about I cm long and 1 
cm in diameter. One pair of faces, flat and parallel 

to within about J pm, was polished on each crystal 
by Valpey-Fisher Corporation. The orientations of the 
faces were checked by Laue X-ray back-reflection, and 
found to be within J ° of those listed, except for 

,specimen 5, which was misaligned by 6°. A rough 
estimate indicates that this error will not affect the 
results within the accuracy reported here. The final 
lengths of the samples are listed in Table 2. 

MgF2 (rutile) has tetragonal symmetry (space group 
Dl~-P4/mmm), and consequently has six independent 
second-order elastic moduli [14]. The combinations 
of these moduli which control the velocities of compres
sional and shear waves in the crystallographic orienta
tions of the above specimens are listed in Table 2. The 
eleven modes of propagation are sufficient to determine 
all six independent moduli with some redundancy. 
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TABLE 2 

Crystal lengths, wave modes and corresponding combinations 
of elastic moduli for MgF2 samples 

Length 
(em) 

Crystals J and 2 
1.0797 

Crystal 3 
0.9639 

Crystal 4 
1.0797 

Crystal 5 
0.9639 

Mode 

1 
2 

3 
4 
5 

6 

7 

8 

9 

10 

II 

Mode * 

[OOl]L 
[OOl]T any 

[IOO]L 
[100]T[010] 
[IOO]T[OOl] 

[110]L 

[l10]T[110] 

[llO]T[OOl] 

45° L ** 

45° T45° ** 

45° T[010] ** 

Modulus 

c33 

c44 

Cil 
c66 
c44 

_ I 
cL-2(cJI 
+ c 12 + 2c 66) 
cT = !(Cll 
- c 12) 

c44 

cQL= 
l(A + B} *** 4 
cQT= 

!(A - B) *** 4 

~(C44 + C66) 

* Wave normal direction, type (longitudinal , L, o r transverse, 
T) and polarization. 

** Wave normal 45° to [lOOJ and [OOlJ . 
*** A = cll +c33 + 2C44 , B = [(cll - C3 3)2 +4(c13 + C44)2JI/2 . 

Modes 9 and 10 are no t purely longitudinal and transverse, 
respectively. 

3. Experimental methods 

Ultrasonic measurements were made using an 
interferometer system, described in detail by R.I . 
O'Connell et a!. (in preparation) and basically similar 
to that described by Spetzler [15]. Two high-frequency 
phase coherent ultrasonic pulses are generated in the 
sample via quartz transducers, the second pulse super
imposed on the echo of the first. Variation of the 
ultrasonic frequency produces alternate construc-
tive and destructive interference, which is monitored 
via the amplitude of a selected echo combination. The 
phase of the interference cycle is directly related to 
the phase difference between the pulses, and hence 
to the sound velocity, and is determined as a function 

of frequency via a series of Fourier transform algo
rithms. An on-line mini-computer controls the data 
acquisition and performs the initial data processing. 
Pressure derivatives were here calculated from a deter
mination of the variation of phase with pressure at a 
fixed frequency. Used in this way , the method is 
therefore equivalent to the widely used pulse super
position method described by McSkimin and 
Andreatch [16] . 

Pressures up to 7 kbars were generated with a 
Bridgman piston-cylinder apparatus with a kerosene 
pressure medium . Pressure was determined to within 
I % with a Heise gauge. 

Measurements of zero-pressure velocities were 
made with a steel buffer rod between the transducer 
and sample. The buffer rod and sample were bonded 
with phenyl salicylate, which melts at 44°C, and hence 
can easi ly be made to form a thin bond . 20 MHz trans
ducers were used , and phase was measured between 
about 10 and 30 MHz. The phase difference between 
successive echoes is : 

4rrfL 
1> =-- + 1>r 

1) 
(1) 

where f is the ultrasonic frequency, L is the sample 
length , v is the wave velocity and 1>r is the phase shift 
due to reflections at the ends of the sample. A con
stant phase shift of rr occurs at the free end. The buffer
sample bond causes a phase shift at the buffer end of 
the sample which depends on frequency. This type of 
phase shift has been investigated theoretically and 
experimentally by McSkimin [17,18] and Davies and 
O'Connell [19]. The results of Davies and O'Connell 
indicate that Mr/df is likely to be less than about 0.1 % 
of d1>ldf. The effects of the bond phase shift can thus 
be ignored to this accuracy. In terms of the frequency 
step b..f= 2rr/(d1>/df) between successive constructive 
interferences, the velocity is , from equation (I): 

4rrL 
v =--=2Lb..f 

d1>/df 

b..f is the reciprocal of the round-trip travel time of 
the wave through the sample. 

(2) 

Measurements under pressure were made with 
transducer bonded directly onto the sample with Dow 
Chemical resin 276-V9 . Both the transducer and the 
bond cause a phase shift upon reflection from that face 
of the sample. The bond phase shift is very small at the 



resonance frequencY,[r, of the transducer [\6]. 1t in
creases away from the resonance frequency, but de
creases with increasing pressure [\9]. The transducer 
phase shift varies in a predictable way with frequency 
[20], and the variation of ir with pressure has been 
measured [21]. By determining the phase as a func-
tion of pressure at the zero-pressure resonance fre
quencY,[ro, and correcting for the transducer phase 
shift, the effect of the bond phase shift on the measured 
pressure derivative of the relevant elastic modulus 
should amount to less than 0.02 [19] . The relevant 
combination of elastic moduli is M = pv2

, where p is 
the density. Expressions for the pressure derivative 
of M and for the transducer correction are [\9]: 

aM M act> M (aM) -= - 2- -+-(l-2KT~T)+ -ap ¢ ap KT ap COIT. 
(3) 

(
aM) =~ Zt a Inir 
ap COIT. L ir p 

(4) 

where KT = p(ap/aph is the isothermal bulk modulus 
and ~T = - (a In L/aPh is the linear compressibility 
of the sample, and Zt = PtVt is the transducer impedance. 
Expressions for the linear compressibility of tetragonal 

TABLE 3 
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crystals in any direction, in terms of the elastic com
pliances or stiffnesses, are given by Nye [14]. Equation 
(3) contains implicitly the correction for the change in 
length of the crystal under pressure. 

4. Zero-pressure results 

The results of the zero-pressure measur~ments are 
given in Table 3 in terms of the pseudo-resonance 
frequency, fj.i, of the path, along with the derived 
elastic wave velocity and corresponding modulus. The 
X-ray density of 3.178 g/cm 3 [22] was assumed. 

The six independent elastic moduli where deter
mined from the eleven mode moduli by requiring a 
simultaneous least-squares fit to the mode moduli . The 
resulting best-fit moduli are included in Table 1. The 
internal consistency of the data is demonstrated by 
the comparison, in Table 3, of the measured mode 
moduli with those recalculated from the set of best-fit 
moduli. The discrepancies of all but modes 10 and 11 
are less than 0.3%. Modes 9 and 10 may have been 
affected by the fact that they are not pure longitudinal 
and transverse, respectively, so that coupling of 
modes can occur at reflections . For all modes, an 
internal consistency within I % of the mode moduli 
is assured. 

Measured pseudo-resonance frequencies, velocities and corresponding moduli of variolls modes in MgF2 at zero pressure. Mode 
moduli calculated from best-fit Cij (Table 1) are included to show internal consistency 

Mode !:J.[ v M= pv2 M (best-fit Cij) Discrepancy 
(kHz) (km/s) (Mbars) (Mbars) (%) 

Crystal 

I 370 .7 8.005 2.037 2.040 0.2 
2 195 .6 4.224 0.567 0.567 0 

2 371.5 8.023 2.045 2.040 0.3 
2 195.4 4.220 0.566 0 .567 0.2 

3 3 347.7 6.703 1.428 1.427 0.1 
4 281.1 5.418 0.933 0.935 0.2 
5 218.9 4.220 0.566 0.567 0.2 

4 6 377.2 8.146 2.109 2.110 0.1 
7 130 .5 2.818 0.252 0.2525 0.2 
8 195.4 4.220 0.566 0.567 0.2 

5 9 387.2 7.465 1.771 1.773 0.1 
10 210.9 4.066 0.525 0.527 0.4 
11 253.1 4.879 0,757 0.751 0.9 
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The six independent moduli are compared with 
other measurements of MgF2 in Table I. The uncer· 
tainties given in Table I are derived from the devia
tions from internal consistency (Table 3). Discrepan
cies between the present results and those of Haussiihl 
[22], Aleksandrov et a!. [23] and Jones [24] are some
what larger : 3% for C12 (errors are compounded in 
deriving this from the measured moduli; see Table 2) , 
and up to 2% for the other moduli . Thus the present 
data are in quite good agreement with some other 
recent measurements, although the discrepancies are 
larger than would be expected from the internal con
sistency of the data (as is commonly found in ultrasonic 
measurements). In contrast, the results of Cutler et al. 
[25] differ from the others by more than 10% in some 
cases. 

5. Pressure derivatives 

The measurements of relative phase vs. pressure 
are illustrated in Fig. I. Only two of the runs were 
completed to 7 kbars because of various difficulties. 
Modes J, 2 , 7 and 8 terminated because the bond 
deteriorated and the signal was lost. In the initial 
runs with crystals 1 and 2 , the crystals were cracked 
around the transducer by too rapid decompression 
(presumably because of differential expansion of the 
transducer and the sample) , in the first case because 
of a broken seal , and in the second from inexperience. 
The mode 2 data may be affected by this cracking. 
The modes 7 and 8 data are not of high quality, be-

TABLE 4 
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Fig. 1. Measured relative phase increment vs. pressure for 
indicated modes (Table 2) of Mgf'2' Mode 6 data are converted 
from measurements of frequency shift vs. pressure, using 
(a In cp/ap)r = - (0 In f/ap)cp, without any transd ucer correc-
tion, which is very small in this case. Bars denote results for 
adjacent constructive and destructive interferences which 
bracketed the transducer resonance frequency. 

Measure pressure derivatives of phase, and derived pressure derivatives of mode moduli 

Mode arp/ap * (I/K) - 2{3 fr (aM/aP)corr. aM/ap 
(rad/kbar) (Mbar- 1) (MHz) 

1 - 0.39 ± 0.01 0.44 20 0.07 5.66 ± 0.15 
2 -0.41 0.44 20 - 0.03 0.94 
3 -0.86 ± 0.01 0.27 10 0.10 5.01 ± 0.06 
6 - 0.93 ± 0 .015 ** 0.27 10 0.14 8.59 ± 0.14 
7 1.4 ± 0.1 0.27 20 - 0.02 - 0.68 ± 0.05 
8 - 0.38 ± 0.05 0.27 20 - 0.03 0.79 ± 0.10 
9 - 0.65 ± 0.01 0.35 10 0.13 5.51 ± 0.08 

* Uncertainties estimated from scatter in data (Fig. 1) . 
** Calculated from measurement of af/ap. 

j 
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~ 
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cause coupling of the two modes by the transducer at 
each reflection resulted in some mutual contamination. 
The mode 6 data were obtained by manual measure
ments of the frequency shift of the interference 
pattern because the on-line computer had failed. In 
spite of the incompleteness and poor quality of some 
of the data, they are sufficient to constrain the moduli 
derivatives fairly well because none of the larger 
relative errors (such as in mode 7, Fig. 1) were trans
lated into large absolute errors. 

The measured phase derivatives, with uncertainties 
estimated from the scatter in the data, are given in 
Table 4, along with the derived mode moduli deriva
tives, including corrections for length change and 
transducer phase shift. The transducer longitudinal 
and transverse impedances are IS.2 and 10.3 X lOs 
g cm -2 s - 1, respectively , and the logarithmic reso
nance frequency derivatives are 1.Sl and - 3.68 
Mbar- I [21]. The only redundancy in these data is 
between modes 2 and 8. Since mode 2 is suspect, the 
mode 8 data were used, with fairly large uncertainty. 
The measured and derived single crystal moduli 
derivatives are included in Table 1. The estimated 
uncertainty of the derived quantities is about 0.2-0.3, 
based on the uncertainties of the measured deriva
tives given in Table 4. 

Pressure derivatives of the isotropic aggregate bulk 
and shear moduli are also included in Table 1. These 
have been estimated from the derivatives of the 
Hashin-Shtrikman bounds [26,27], but it should be 
noted that these are not themselves bounds on the 
derivatives. It can be seen that the estimates of the 
shear modulus derivative are quite uncertain. The 
estimated isotropic aggregate derivatives are compared 
in Table I with measured derivatives on polycrystal
line aggregates given by Rai and Manghnani [12] . The 
agreement is excellent. 

6. Discusssion 

These results suggest that the two most notable 
features of the pressure derivatives of the elastic 
moduli of the rutile-structure oxides are also present 
in this fluoride analogue: the value of K' of S.1 is 
fairly high, though not as high as in any of the oxides, 
and the value of c~ = CC'II - c'I2)/2 is negative. 

The value of K' may not in fact be unusually high 
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for fluorides. The values of K' for LiF , NaF, KF 
(rocksaJt structures) and CaF2 and BaF2 (fluorite 
structures) all are in the range 4.9 - S.2 [S]. The in
creasing values of K' through the sequence MgF2, Sn02, 
Ge02 suggest that larger values of K' may be associated 
with more covalent bonding. Thus stishovite may 
indeed have a quite high value of K', close to 7 [S]. 

The long wavelength Big optic mode of rutile also 
has a negative pressure derivative [28 ,29]. It has been 
pointed out that the combined displacements associated 
with the Big optic mode and the Cs acoustic mode 
are the same as those required to transform the rutile 
structure into the CaCI2 structure [30] . Both of these 
"mode softenings"may thus be associated with an 
approaching instability of the rutile structure. 

Theoretical predictions of the pressure derivatives 
of the elastic moduli were made by Striefler and 
Barsch [31] using a modified rigid-ion model includ
ing an effective ionic charge and first- and second
nearest neighbor central repulsive forces of the Born
Mayer type. Their predicted values are included in 
Table 1, and can be seen to be consistently substan
tially lower than the measured values. In analogous 
models of rutile-structure oxides, Striefler and 
Barsch [32] found that non-central forces had to be 
included in order to obtain a reasonable fit to data. 
The discrepancies for MgF2 suggest that some such 
modification of the model is also required in the 
case of fluorides. 
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